Axiom of Choice - определение. Что такое Axiom of Choice
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Axiom of Choice - определение

Найдено результатов: 247038
Axiom of choice         
  • (S<sub>''i''</sub>) is an infinite [[indexed family]] of sets indexed over the [[real number]]s '''R'''; that is, there is a set S<sub>''i''</sub> for each real number ''i'', with a small sample shown above. Each set contains at least one, and possibly infinitely many, elements. The axiom of choice allows us to arbitrarily select a single element from each set, forming a corresponding family of elements (''x''<sub>''i''</sub>) also indexed over the real numbers, with ''x''<sub>''i''</sub> drawn from S<sub>''i''</sub>. In general, the collections may be indexed over any set <span style="font-family:serif;">''I''</span>, (called index set which elements are used as indices for elements in a set) not just '''R'''.
STATEMENT THAT THE PRODUCT OF A COLLECTION OF NON-EMPTY SETS IS NON-EMPTY
AxiomOfChoice; Axiom of Choice; Choice axiom; Choice Axiom; Axiom Of Choice; ZF¬C; Equivalents of the axiom of choice; Independence of the axiom of choice; The Axiom of Choice; Partition principle
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of bins, each containing at least one object, it is possible to construct a set by arbitrarily choosing one object from each bin, even if the collection is infinite.
Axiom of Choice         
  • (S<sub>''i''</sub>) is an infinite [[indexed family]] of sets indexed over the [[real number]]s '''R'''; that is, there is a set S<sub>''i''</sub> for each real number ''i'', with a small sample shown above. Each set contains at least one, and possibly infinitely many, elements. The axiom of choice allows us to arbitrarily select a single element from each set, forming a corresponding family of elements (''x''<sub>''i''</sub>) also indexed over the real numbers, with ''x''<sub>''i''</sub> drawn from S<sub>''i''</sub>. In general, the collections may be indexed over any set <span style="font-family:serif;">''I''</span>, (called index set which elements are used as indices for elements in a set) not just '''R'''.
STATEMENT THAT THE PRODUCT OF A COLLECTION OF NON-EMPTY SETS IS NON-EMPTY
AxiomOfChoice; Axiom of Choice; Choice axiom; Choice Axiom; Axiom Of Choice; ZF¬C; Equivalents of the axiom of choice; Independence of the axiom of choice; The Axiom of Choice; Partition principle
<mathematics> (AC, or "Choice") An axiom of set theory: If X is a set of sets, and S is the union of all the elements of X, then there exists a function f:X -> S such that for all non-empty x in X, f(x) is an element of x. In other words, we can always choose an element from each set in a set of sets, simultaneously. Function f is a "choice function" for X - for each x in X, it chooses an element of x. Most people's reaction to AC is: "But of course that's true! From each set, just take the element that's biggest, stupidest, closest to the North Pole, or whatever". Indeed, for any finite set of sets, we can simply consider each set in turn and pick an arbitrary element in some such way. We can also construct a choice function for most simple {infinite sets} of sets if they are generated in some regular way. However, there are some infinite sets for which the construction or specification of such a choice function would never end because we would have to consider an infinite number of separate cases. For example, if we express the real number line R as the union of many "copies" of the rational numbers, Q, namely Q, Q+a, Q+b, and infinitely (in fact uncountably) many more, where a, b, etc. are irrational numbers no two of which differ by a rational, and Q+a == q+a : q in Q we cannot pick an element of each of these "copies" without AC. An example of the use of AC is the theorem which states that the countable union of countable sets is countable. I.e. if X is countable and every element of X is countable (including the possibility that they're finite), then the sumset of X is countable. AC is required for this to be true in general. Even if one accepts the axiom, it doesn't tell you how to construct a choice function, only that one exists. Most mathematicians are quite happy to use AC if they need it, but those who are careful will, at least, draw attention to the fact that they have used it. There is something a little odd about Choice, and it has some alarming consequences, so results which actually "need" it are somehow a bit suspicious, e.g. the Banach-Tarski paradox. On the other side, consider Russell's Attic. AC is not a theorem of Zermelo Frankel set theory (ZF). Godel and Paul Cohen proved that AC is independent of ZF, i.e. if ZF is consistent, then so are ZFC (ZF with AC) and ZF(Axiom of ChoiceC) (ZF with the negation of AC). This means that we cannot use ZF to prove or disprove AC. (2003-07-11)
Equivalents of the Axiom of Choice         
  • (S<sub>''i''</sub>) is an infinite [[indexed family]] of sets indexed over the [[real number]]s '''R'''; that is, there is a set S<sub>''i''</sub> for each real number ''i'', with a small sample shown above. Each set contains at least one, and possibly infinitely many, elements. The axiom of choice allows us to arbitrarily select a single element from each set, forming a corresponding family of elements (''x''<sub>''i''</sub>) also indexed over the real numbers, with ''x''<sub>''i''</sub> drawn from S<sub>''i''</sub>. In general, the collections may be indexed over any set <span style="font-family:serif;">''I''</span>, (called index set which elements are used as indices for elements in a set) not just '''R'''.
MATHEMATICS BOOK
AxiomOfChoice; Axiom of Choice; Choice axiom; Choice Axiom; Axiom Of Choice; ZF¬C; Equivalents of the axiom of choice; Independence of the axiom of choice; The Axiom of Choice; Partition principle
Equivalents of the Axiom of Choice is a book in mathematics, collecting statements in mathematics that are true if and only if the axiom of choice holds. It was written by Herman Rubin and Jean E.
Axiom of countable choice         
  • uncountably infinite]]), number of elements. The axiom of countable choice allows us to arbitrarily select a single element from each set, forming a corresponding sequence of elements (''x''<sub>''i''</sub>)&nbsp;= ''x''<sub>1</sub>, ''x''<sub>2</sub>, ''x''<sub>3</sub>,&nbsp;...
AXIOM OF SET THEORY, ASSERTING THAT THE PRODUCT OF A COUNTABLE FAMILY OF NONEMPTY SETS IS NONEMPTY
Countable choice; Countable axiom of choice; ACω
The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N.
Axiom of Choice (band)         
MUSICAL BAND
Axiom of Choice is a southern California (United States) based world music group of Iranian émigrés who perform a modernized fusion style rooted in Persian classical music with inspiration from other classical Middle Eastern and Eastern paradigms.
Axiom of global choice         
MATHEMATICAL CONCEPT
Global axiom of choice; Global choice; Axiom of Global Choice
In mathematics, specifically in class theories, the axiom of global choice is a stronger variant of the axiom of choice that applies to proper classes of sets as well as sets of sets. Informally it states that one can simultaneously choose an element from every non-empty set.
Axiom of dependent choice         
In mathematics, the axiom of dependent choice, denoted by \mathsf{DC} , is a weak form of the axiom of choice ( \mathsf{AC} ) that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis.
Axiom of extensionality         
AXIOM OF ZERMELO–FRAENKEL SET THEORY ASSERTING THAT SET EQUALITY IS DETERMINED BY THE MEMBERSHIP RELATION
Axiom of extension; Axiom of Extensionality; Axiom extensionality; Extensionality axiom; Axiom of equality
In axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of extensionality, or axiom of extension, is one of the axioms of Zermelo–Fraenkel set theory. It says that sets having the same elements are the same set.
Axiom of regularity         
AXIOM STATING THAT ALL SETS ARE WELL-FOUNDED
Axiom of foundation; Axiom of Fundierung; Foundation axiom; Regularity axiom; Axiom of Foundation; Axiom of well foundation; Axiom of Regularity; Well founded set; Axiom of fundierung
In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set A contains an element that is disjoint from A. In first-order logic, the axiom reads:
Axiom of Comprehension         
AXIOM SCHEMA
Axiom of specification; Axiom of separation; Axiom schema of separation; Axiom schema of comprehension; Axiom of comprehension; Unrestricted comprehension; Axiom of abstraction; Axiom of subsets; Axioms of subsets; Subset axiom; Axiom schema of restricted comprehension; Comprehension axiom; Aussonderungsaxiom; Axiom schema of unrestricted comprehension; Unrestricted comprehension principle
<mathematics> An axiom schema of set theory which states: if P(x) is a property then x : P is a set. I.e. all the things with some property form a set. Acceptance of this axiom leads to Russell's Paradox which is why Zermelo set theory replaces it with a restricted form. (1995-03-31)